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Abstract: We compute the planar finite size corrections to the spectrum of the dilatation

operator acting on two-impurity states of a certain limit of conformal N = 2 quiver gauge

field theory which is a ZM -orbifold of N = 4 supersymmetric Yang-Mills theory. We match

the result to the string dual, IIB superstrings propagating on a pp-wave background with

a periodically identified null coordinate. Up to two loops, we show that the computation

of operator dimensions, using an effective Hamiltonian technique derived from renormal-

ized perturbation theory and a twisted Bethe ansatz which is a simple generalization of

the Beisert-Dippel-Staudacher [1] long range spin chain, agree with each other and also

agree with a computation of the analogous quantity in the string theory. We compute

the spectrum at three loop order using the twisted Bethe ansatz and find a disagreement

with the string spectrum very similar to the known one in the near BMN limit of N = 4

super-Yang-Mills theory. We show that, like in N = 4, this disagreement can be resolved

by adding a conjectured “dressing factor” to the twisted Bethe ansatz. Our results are

consistent with integrability of the N = 2 theory within the same framework as that of

N = 4.
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1. Introduction

The idea that the planar limit of N = 4 supersymmetric Yang-Mills theory and its string

theory dual, the IIB superstrings propagating on the AdS5×S5 background, could both

be exactly integrable has attracted a good deal of attention [1 – 18]. Both ideas have seen

significant development and there is now some hope of an exact solution of one or both

theories. This could give a remarkably detailed check of the AdS/CFT correspondence [19 –

21] at the level of matching planar Yang-Mills theory to non-interacting strings.

In particular, the gauge theory results have progressed to the point where integrability

has been checked explicitly up to three loop order [7] and there are now proposals for

integrable systems in various sectors of the theory which would be equivalent to planar

Yang-Mills theory to all orders in its loop expansion [7, 1, 22, 23].

If string theory on AdS5×S5 is integrable, the theory on simple orbifolds of that space

would also be expected to be integrable. In the Yang-Mills dual, orbifolding reduces the

amount of supersymmetry and this gives some hope of finding integrability in theories with

less supersymmetry [24 – 28]. In this Paper, we shall consider the issue of integrability of
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an N = 2 supersymmetric SU(N)M quiver gauge theory [29] which can be obtained as

a particular ZM -orbifold of N = 4 [30]. This system is also conjectured to be integrable

using a twisted version of the Bethe ansatz [31]. Its string theory dual is IIB superstrings

on the space AdS5×S5/ZM .

Thus far, explicit solutions of string theory on these backgrounds are not known.

Quantitative results are limited to the supergravity limit, or to some large quantum number

limits [32 – 34, 27]. For example, a Penrose limit of AdS5×S5/ZM , together with a large

order limit of the orbifold group, M → ∞ can be taken in such a way that it obtains a

plane-wave [35] with a periodically identified null coordinate. The IIB superstring can be

solved explicitly in this background. Mukhi, Rangamani and Verlinde (MRV) [30] observed

that it is possible to find the Yang-Mills dual of this theory by taking an analog of the

BMN limit [36 – 38] of the N = 2 quiver gauge theory. It is a double-scaling limit where

M →∞ and N →∞ with the “effective string coupling”, g2 = M
N , and light-cone radius1

R− =
1

2
α′
√
g2
YM

N

M
≡ 1

2
α′
√
λ′ (1.1)

held finite.

In that limit, they found a beautiful matching of the discrete light-cone quantized

(DLCQ) free string spectrum and planar conformal dimensions of the appropriate Yang-

Mills operators. Subsequently, some of the simplifying aspects of DLCQ have been ex-

ploited to examine string loop corrections in this model [27].

Our aim in this Paper is to present a computation of the leading finite size correction

to the MRV limit. We will concentrate on planar Yang-Mills theory and non-interacting

strings. In the course of our work, we will give an explicit demonstration that the twisted

integrability ansatz for the N = 2 gauge theory indeed matches the diagrammatic compu-

tation of operator dimensions to two loop order.

We will compute the 1/M corrections to the spectrum of two-impurity operators to

three loop order, λ′3, in both the gauge theory and the DLCQ string theory. We shall find

perfect agreement to two loop order and a disagreement at three-loop order.

A three-loop order disagreement is already well-known to occur in the N = 4 theory [5,

7, 1]. We can check that, in the appropriate limit, our result matches the one for N = 4.

We have tested the statement in ref. [31] that the orbifolding of N = 4 gauge theory

results in the modification of the Bethe ansatz by a simple twist. Our conclusion is that

it works at least to two-loop order, and we have strong evidence that it also works at

three-loop order. 2

1This is similar to the usual definition of λ′ in the BMN limit of N = 4 super-Yang-Mills theory,

1

(α′p+)2
=
g2
YMNM

(kM)2
≡ λ′

k2
or 2p+ =

k

R−

.
2An explicit computation of string energies on orbifolds using twisted Bethe equation was first considered

by Ideguchi [39]. He computed the spectrum of infinite length operators of N = 0, 1, 2 planar orbifold field

theories to one loop order and showed that they matched the semi-classical spectra of circular string solutions

of the strings in AdS5×S5/ZM .
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In addition, we construct the dressing factor [10] that must be taken into account to

find the factorized S-matrix [12] when the twisted Bethe ansatz is applied to the string

sigma model on the orbifolded background in the near-MRV limit.

1.1 Beisert-Dippel-Staudacher ansatz for N = 4

In its most advanced form, the result of integrability of N = 4 super-Yang-Mills theory is

a rather simple proposal for computing dimensions of operators. The typical operators are

composites of the scalar fields Φi(x), i = 1, . . . , 6. For simplicity, we shall concentrate on

the su(2) bosonic sector. In that sector, one restricts attention to four of the scalars in the

complex combinations Z = Φ1 + iΦ2 and Φ = Φ3 + iΦ4 and the composite operators

Tr (ΦZZZΦΦZΦZZZ . . .)

At the tree level, since scalar fields have dimension one, the dimension of this operator

is given by the number of scalars that it contains (we will usually call this L). This

spectrum is degenerate, in that it is the same for whatever scalar fields are used to make

the composite operator. The problem at hand is to evaluate quantum corrections to the

classical dimensions. These corrections should resolve the degeneracy. They are obtained

by finding linear combinations of the composite operators which diagonalize the action of

the dilatation operator. The analogy of this problem with diagonalizing the Hamiltonian

of a spin chain, and the fact that, in the leading order of perturbation theory, it is identical

to the integrable Heisenberg spin chain was observed by Minahan and Zarembo [2].

There is a recent proposal which, upon assuming that planar Yang-Mills theory is

integrable, gives an elegant presentation of the problem of computing operator dimensions

to all orders in the coupling constant [1]. We emphasize at this point, that we shall only

use this proposal up to three loop order, where its equivalence to renormalized Yang-Mills

perturbation theory has been firmly established. In fact, we shall mainly be interested in

a twisted generalization of it, which is conjectured to describe a ZM -orbifold of N = 4

super-Yang-Mills theory.

In the proposal, the problem for computing eigenvalues of the dilatation operator is

summarized in three equations. First, it makes use of the Bethe equation for M magnons

on a chain of length L:

eipjL =
M∏

l=1 ; l 6=j

ϕj − ϕl + i

ϕj − ϕl − i
=

M∏

l=1 ; l 6=j
S(pj , pl) l = 1, . . . ,M (1.2)

where pi are the magnon momenta and ϕi are the corresponding rapidities. The factoriza-

tion to 2-body S-matrices S(pi, pj) is also shown. The momenta in (1.2) are constrained

by the “level-matching condition”

M∑

i=1

pi = 0 mod 2π (1.3)

which results from the periodicity of the spin chain. Then, there is the BDS “all-loop

ansatz” [1], which are the remaining two equations. One relates momenta and rapidities,
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which depends on the ’t Hooft coupling λ,

ϕ(pj) =
1

2
cot

pj
2

√
1 +

λ

π2
sin2 pj

2
. (1.4)

The other gives the spectrum of dimensions as a function of the momenta,

∆ = L−M+

M∑

j=1

√
1 +

λ

π2
sin2 pj

2
(1.5)

The program of computing operator dimensions is implemented as follows. Eqs. (1.2)

and (1.4) should first be solved to find pi. The solutions must depend on λ and can in

principle be found at least order-by-order in an expansion in λ. Then, the solutions must be

inserted into eq. (1.5) to find the operator dimensions. The statement is that this procedure

should yield the dimensions of this class of operators in N = 4 super-Yang-Mills theory.

Explicit computations and comparison with diagrammatic perturbation theory have shown

that this procedure agrees with renormalized Yang-Mills perturbation theory to at least

third order, and is conjectured to do so for higher orders. There is a number of quite

non-trivial checks of this fact which are outlined in ref. [1].

1.2 N = 2 quiver gauge theory as orbifolded N = 4

Before we go on to discuss integrability of the N = 2 theory, we pause to review some facts

about the structure of the theory and the procedure for computing operator dimensions

there.

The N = 2 quiver gauge theory with gauge group SU(N)M is obtained from N = 4

with gauge group SU(MN) by a well-known projection. Details of this construction can

be found in the literature [29, 24, 40]. The conventions and notation that we use are those

of refs. [30, 27] and details can be found there.

The procedure for obtaining the quiver gauge theory from N = 4 begins by embedding

the orbifold group ZM , which is a subgroup of the R-symmetry group, into the gauge

group. We will assume that ZM is in the su(2) subgroup of the su(4) R-symmetry so

that orbifolding preserves N = 2 supersymmetry. If γ is an element of ZM , R(γ) is the

corresponding element of the R-symmetry group and U(γ) is a U(MN)×U(MN) matrix

containing N copies of the regular representation of ZM , we consider that subset of the

N = 4 fields which obey the constraint

X = U(γ) [R(γ) ◦X]U †(γ) (1.6)

This is accomplished by setting to zero all of those components which do not obey this

condition. In the present case, choosing U(γ) having the N ×N blocks

U(γ) =




1̄ 0 0 0 . . .

0 ω 0 0 . . .

0 0 ω2 0 . . .

. . . . . . .

0 0 0 . . . ωM−1



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where ω = e
2πi
M and the action

R(γ)Z = ωZ , R(γ)Φ = Φ

we see that the surviving components of the two scalar fields which are of interest to us

are N ×N matrices which are embedded in MN ×MN N = 4 variables as follows

Z =




0 0 0 . . . AM
A1 0 0 0 . . .

0 A2 0 0 . . .

0 0 A3 0 . . .

. . . . . . .

0 0 0 0 . . .




, Z̄ =




0 Ā1 0 0 . . .

0 0 Ā2 0 . . .

0 0 0 Ā3 . . .

. . . . . . .

ĀM 0 0 0 . . .




(1.7)

Φ =




Φ1 0 0 0 . . .

0 Φ2 0 0 . . .

0 0 Φ3 0 . . .

. . . . . . .

0 0 0 . . . ΦM




, Φ̄ =




Φ̄1 0 0 0 . . .

0 Φ̄2 0 0 . . .

0 0 Φ̄3 0 . . .

. . . . . . .

0 0 0 . . . Φ̄M




(1.8)

It is convenient to think of the blocks as being labelled periodically, AM+1 = A1, etc.

The gauge group is [SU(N)]M with elements labelled by UI , I = 1, . . . ,M and each field

transforms as

AI → UIAIU
†
I+1 , ĀI → UI+1AIU

†
I (1.9)

ΦI → UIΦIU
†
I , Φ̄I → UIΦ̄IU

†
I (1.10)

States of the su(2) sector of N = 4 super-Yang-Mills were words made from Z and Φ,

Tr(ZZΦZΦZZZZΦZZZ . . .)

Since the remaining gauge transformations (1.9) and (1.10) now commute with U(γ), there

are additional gauge invariant twisted operators

Tr
[
U(γ)`ZZΦZΦZZZZΦZZZ . . .

]
, ` = 0, 1, . . . ,M − 1 (1.11)

These are translated into words with (AI ,ΦI) by substituting (1.7) and (1.8). For example,

TrZJ → MTr
[
(A1A2 . . . AM )k

]
(1.12)

Here, the trace would vanish unless the total number of fields is given by J = kM with k

an integer. In the string theory dual, which is DLCQ strings, the integer k is the number

of units of light-cone momentum and the operator (1.12) corresponds to the vacuum state

of the string sigma model in the sector with discrete light-cone momentum 2p+ = k/R−.

States with impurities are made by inserting ΦI into the trace. Because of the possible

twists of the trace, there are more possible states with these insertions than occurred in
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the parent N = 4 theory. For example, in N = 4, the cyclic property of the trace implies

that there is only one possible one-impurity state,

TrΦZJ

In the analogous operator of the N = 2 theory, there are M inequivalent one-impurity

states

Tr
[
A1 . . . AI−1ΦIAI . . . AM (A1 . . . AM )k−1

]
, I = 1, . . . ,M (1.13)

In the string dual, the extra degrees of freedom that result from this richer structure turns

out to be related to the wrapping number of the string world sheet on the compact null

direction. A naive Fourier transform of the 1-impurity state, assuming that the are kM

positions that the impurity could take up is

kM∑

I=1

ei
2π
kM

nITr
[
A1 . . . AI−1ΦIAI . . . AM (A1 . . . AM )k−1

]
, n = 0, 1, . . . , kM − 1

The degree of freedom in the dual string theory corresponding to the wave-number n in this

Fourier transform is the world-sheet momentum. However, cyclicity of the trace implies

that n = k · ` where ` is an integer. This is the level-matching condition and the integer

` is dual to the wrapping number of the string around the periodic null direction. Once

we realize that n = k · `, we would recover the twisted expression (1.11), and identify the

string wrapping number ` with the twist in (1.11).

If the orbifold symmetry group is not spontaneously broken, ` is a good quantum

number of the states of the theory and operators with different values of ` do not mix with

each other. In addition it is known that [40], in the planar limit, the correlation functions

of un-twisted operators of the N = 2 theory are identical to those of their parent operators

in N = 4 super-Yang-Mills theory once one makes the replacement λ→ λ/M . This means

that, for the untwisted operators, with ` = 0 in eq. (1.11), the dimension should be identical

to that in N = 4 super-Yang-Mills theory. This will give a consistency check for some of

our computations in the following.

For the most part, in this Paper we will be interested in two-impurity operators of the

form

OIJ =Tr
(
A1. . .AI−1ΦIAI . . .AM (A1. . ..AM )pA1. . .AJ−1ΦJAJ . . .AM (A1. . ..AM )k−p−2

)

(1.14)

where we take I and J as running from 1 to kM . Distinct operators are enumerated by

taking I ≤ J . The number of scalar fields in this operator is kM + 2. The cyclic property

of the trace implies the conditions

OI,kM+1 = O1I (1.15)

and

OI+M,J+M = OI,J (1.16)

which will be important to us.

– 6 –
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1.2.1 The dilatation operator

Just as in N = 4 supersymmetric Yang-Mills theory [41, 3], the computation of dimensions

of the operators of interest to us can be elegantly summarized by the action of an effective

Hamiltonian. This technique was invented in ref. [41]. The N = 4 dilatation operator is

known explicitly in terms of its action on fields up to two loop order, and implicitly to

three loop order [3, 42, 43]. That part which is known explicitly can be projected, using

the orbifold projection, to obtain a dilatation operator for the N = 2 theory. Here, we

shall be interested in computing dimensions of operators in the scalar su(2) sector, so we

only retain the parts of the operator which will contribute there. They can be obtained

by simply substituting the matrices in eqs. (1.7) and (1.8) into the analogous terms of the

N = 4 operator. The result is

D = Dtree +D1 loop +D2 loops (1.17)

where

Dtree =
M∑

L=1

Tr
(
ALĀL + ΦLΦ̄L

)
(1.18)

D1 loop = −g
2
YMM

8π2

M∑

L=1

Tr(ALΦL+1ĀLΦ̄L−ALΦL+1Φ̄L+1ĀL−ΦLALĀLΦ̄L+ΦLALΦ̄L+1ĀL)

(1.19)

D2 loops =
g4
YMNM

2

64π4

M∑

L=1

Tr(ALΦL+1ĀLΦ̄L −ALΦL+1Φ̄L+1ĀL − ΦLALĀLΦ̄L + ΦLALΦ̄L+1ĀL)

+
g4
YMM

2

128π4

M∑

L=1

Tr(ΦLALĀLALΦ̄L+1ĀL −ALΦL+1ĀLALΦ̄L+1ĀL

+ALΦL+1AL+1Φ̄L+2ĀL+1ĀL − ΦLALAL+1Φ̄L+2ĀL+1ĀL
+ALΦL+1ĀLΦ̄LĀL−1AL−1 − ΦLALĀLΦ̄LĀL−1AL−1

+ ΦLALΦ̄L+1ĀLALĀL −ALΦL+1Φ̄L+1ĀLALĀL
+ALΦL+1ĀLALĀLΦ̄L − ΦLALĀLALĀLΦ̄L

+ ΦLALAL+1ĀL+1Φ̄L+1ĀL −ALΦL+1AL+1ĀL+1Φ̄L+1ĀL
+ ΦLALĀLĀL−1Φ̄L−1AL−1 −ALΦL+1ĀLĀL−1Φ̄L−1AL−1

+ALΦL+1ĀLΦ̄LALĀL − ΦLALĀLΦ̄LALĀL)

+
g4
YMM

2

128π4

M∑

L=1

Tr(ΦLALΦ̄L+1ΦL+1Φ̄L+1ĀL −ALΦL+1Φ̄L+1ΦL+1Φ̄L+1ĀL

+ALΦL+1ΦL+1Φ̄L+1ĀLΦ̄L −ΦLALΦL+1Φ̄L+1ĀLΦ̄L

+ALΦL+1Φ̄L+1Φ̄L+1ĀLΦL −ΦLALΦ̄L+1Φ̄L+1ĀLΦL

+ ΦLALΦ̄L+1ĀLΦLΦ̄L −ALΦL+1Φ̄L+1ĀLΦLΦ̄L

+ALΦL+1Φ̄L+1ΦL+1ĀLΦ̄L −ΦLALΦ̄L+1ΦL+1ĀLΦ̄L

+ ΦLALΦL+1ĀLΦ̄LΦ̄L −ALΦL+1ΦL+1ĀLΦ̄LΦ̄L

+ ΦLALΦ̄L+1ĀLΦ̄LΦL −ALΦL+1Φ̄L+1ĀLΦ̄LΦL

– 7 –
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+ALΦL+1ĀLΦ̄LΦLΦ̄L − ΦLALĀLΦ̄LΦLΦ̄L) (1.20)

The number of loops which contribute to each order is exhibited in the power of the Yang-

Mills coupling constant g2
YM which precedes each term. Later we will use either the parent

N = 4 ’t Hooft coupling,

λ ≡ g2
YMNM

which is important for the planar limit, or the modified ’t Hooft coupling

λ′ ≡ g2
YMN

M
=

λ

M2

which is held constant in the MRV limit. In the latter limit, N and M are both put to

infinity so that λ′ and the effective string coupling,

g2 ≡
M

N

are held constant. The effective string coupling controls the appearance of non-planar

diagrams and, to get the planar limit, which we will for the most part be interested in, it

must also be put to zero. Inspection of the 1-loop and 2-loop dilatation operators shows

that, in order for this MRV limit to make sense, their action should be suppressed by some

powers of 1
M further to those exhibited in eqs. (1.19) and (1.20). We shall see that this is

indeed the case.

The action of the operators in eqs. (1.18), (1.19) and (1.20) on a composite of the

form (1.14) is implemented with the following procedure.

We note that each term in the dilatation operators contains a few ĀI ’s and Φ̄I ’s. We

take a term in D, and we Wick-contract the ĀI ’s and Φ̄I ’s which appear in that term with

each occurrence of AI and ΦI in the trace (1.14) according to the rules

〈[
ĀI
]
ab

[AJ ]cd
〉

0
= δIJδadδbc ,

〈[
Φ̄I

]
ab

[ΦJ ]cd
〉

0
= δIJδadδbc

Here we are treating the fields as if they are simply matrices in a Gaussian matrix model,

ignoring their space-time dependence and simply substituting them with other fields ac-

cording to the rules of performing the contractions. The space-time dependence, that of

course must be taken into account in order to compute dimensions in renormalized pertur-

bation theory, has already been taken care of in formulating the effective Hamiltonian.

In doing these contractions with the first term in (1.17), the tree-level operator, we

find the tree level contribution to the conformal dimension. The procedure merely counts

the number of scalar fields, giving kM + 2 in the case of (1.14).

When we Wick-contract with the 1-loop and 2-loop terms, (1.19) and (1.20), once all

possible contractions are done, we find a superposition of operators where the total number

of fields in each operator is the same and the number of impurities in each operator is still

two, but the positions of the impurities have been shifted.

All of the operators in the superposition have the same tree-level dimensions. It means

that, at the outset, we could have began with linear combinations of them. We could then

have chosen the coefficients in the linear combinations in such a way as to diagonalize

– 8 –
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the action of the dilatation operator. Upon doing this, we would find the eigenvalues, i.e.

the dimensions, and the linear combinations that we find would be the scaling operators

themselves.

Once the Wick contractions are explicitly performed, the action of the one loop dilata-

tion operator on the operators (1.14) is given by two equations, depending on whether the

impurities lie next to each other or not

D1 loop ◦ OIJ =
λ′M2

8π2

(
−OI+1,J −OI−1,J + 4OIJ −OI,J+1 −OI,J−1

)
, I < J (1.21)

D1 loop ◦ OII =
λ′M2

8π2

(
−OI−1,I −OI,I+1 + 2OII

)
(1.22)

At two loops, the action of the dilation operator results in three equations,

D2 loops ◦ OIJ =
λ′2M4

128π4

(
−OI−2,J −OI+2,J + 4OI−1,J + 4OI+1,J

− OI,J−2 −OI,J+2 + 4OI,J−1 + 4OI,J+1 − 12OIJ
)

(1.23)

for J − I ≥ 2 and

D2 loops ◦ OII =
λ′2M4

128π4

(
−OI−2,I + 4OI−1,I −OI−1,I−1

− 4OI,I + 4OI,I+1 −OI+1,I+1 −OI,I+2

)
(1.24)

D2 loops ◦ OI,I+1 =
λ′2M4

128π4

(
−OI,I+3 + 4OI+1,I+1 + 4OI,I+2 − 14OI,I+1

+ 4OI,I + 4OI−1,I+1 −OI−2,I+1

)
(1.25)

where the second and the third formulae represent, respectively, the nearest (I = J) and the

next-to-nearest (J = I + 1) neighbor cases. We see explicitly that the dilatation operator

is acting like a lattice differential operator on the matrix chains. The result is an effective

spin-chain Hamiltonian. The problem of finding the eigenvalues of this Hamiltonian is

integrable and can be attacked using the twisted Bethe ansatz, which we summarize in the

next subsection.

1.3 Twisted Bethe ansatz for the orbifold

The conjecture [31] is that the spectrum of operator dimensions in the su(2) sector of the

N = 2 quiver theory which is a ZM orbifold of N = 4 is found by including a simple twist

in the Bethe equation (1.2). The other equations, (1.4) and (1.5) are applied unchanged.

For example, for two magnons, the twisted Bethe equations are

eip1(kM+2) = ω`
ϕ1 − ϕ2 + i

ϕ1 − ϕ2 − i
, eip2(kM+2) = ω`

ϕ2 − ϕ1 + i

ϕ2 − ϕ1 − i
(1.26)

Here, as in (1.2), L = kM+2 is the length of the chain. The twist is the M ’th root of unity

factor ω` in front the right-hand-sides of (1.26). ω = e
2π
M
i and the integer ` is the charge

of the state under the U(1) symmetry which is used in the orbifold projection. In the

– 9 –
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dual string theory, it coincides with the wrapping number of the string world-sheet on the

compact null direction. Because of (1.30), it is related to the total world-sheet momentum

ei(p1+p2) = ω`. As in the N = 4 theory, the momenta and rapidities are still related by

ϕ1 =
1

2
cot

p1

2

√
1 +

λ

π2
sin2 p1

2
, ϕ2 =

1

2
cot

p2

2

√
1 +

λ

π2
sin2 p2

2
. (1.27)

and the spectrum is

∆ = kM +

√
1 +

λ

π2
sin2 p1

2
+

√
1 +

λ

π2
sin2 p2

2
(1.28)

Multiplying the two equations in (1.26) gives the condition on the total momentum

ei(p1+p2)kM = 1 → p1 + p2 =
2π

kM
s , s = integer (1.29)

The “level-matching condition” (1.3) is replaced by

M∑

i=1

pi =
2π

M
· ` , ` = integer (1.30)

and it implies

s = k · integer (1.31)

It is clear from the form of the equations (1.26) and (1.27) that the momenta, which

are their solutions, generally depend on λ and the parameter kM . It is also clear that

the momenta which solve them must be small when M is large, pi ∝ 1
kM . This is also

needed for consistency of the MRV limit where M → ∞ and λ → ∞ in such a way that

λ′ = λ
M2 remains finite. Equation (1.27) also implies that ϕ1 and ϕ2 are both of order M

in that limit. Later in this Paper, we shall consider the leading corrections to this limit in

an expansion in 1/M . In the remainder of this subsection, for a warmup exercise, we will

seek the solutions for pi in the MRV limit, where M →∞. In this limit, we hold λ′ = λ
M2

finite.

Even in this limit, we shall not be able to solve equations (1.26) and (1.27) for arbitrary

values of λ′. We will be limited to considering a Taylor expansion of eq. (1.27) in λ′ and

then seeking momenta which are also expressed as expansions in λ′. We begin with the

leading order where we simply set λ′ to zero in eq. (1.27). 3 Then, it is easy to see that

the momenta must be given by

p1 =
2π

kM
n1 +O

(
1

M2

)
, p2 =

2π

kM
n2 +O

(
1

M2

)
(1.32)

where n1 and n2 are integers. Level matching gives the further condition

n1 + n2 = k · `
3We do this by setting λ to zero, but we must be careful to see, a posteriori, that indeed pi ∼ O

`
1
M

´
,

so that setting λ = 0 is equivelent to setting λ′ = 0. We shall see this shortly, in eq. (1.32).
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where ` is an integer. Then eq. (1.28) implies

∆ = kM +

√
1 + λ′

n2
1

k2
+

√
1 + λ′

n2
2

k2
(1.33)

which agrees beautifully with the spectrum of DLCQ free strings on the plane-wave back-

ground.

1.4 Coordinate Bethe ansatz

There is another, equivalent procedure which is sometimes convenient, called the coordinate

Bethe ansatz. Since we will make use of it later, we shall review it here for the special case

of a two-impurity operator.

Consider the dilatation operator in the form of the difference operators (1.21)-(1.25)

which we derived using the effective Hamiltonian. Finding the spectrum of the dilatation

operator entails finding the eigenstates and eigenvalues of the combination of difference

operators (1.21)-(1.25), operating on the space of two-impurity operators. Here, for illus-

tration, we will review the argument that, to order λ′, this is equivalent to the task of

solving the twisted Bethe ansatz which was set out in the previous sub-section. Later on

in this Paper, we will show that this also holds to order λ′2 (and then we will assume that

it holds to order λ′3).

To begin, we take the linear super-position of two-impurity operators

O ≡
∑

1≤I≤J≤kM
ΨIJOIJ (1.34)

Our task is to find the coefficients ΨIJ in this series so that this operator is an eigenstate

of the dilation operator. If we impose the same periodicity conditions on ΨIJ as the

operators OIJ obey in (1.15), the action of the dilatation operator as difference operators

in (1.21)-(1.25) is self-adjoint4 and we can recast the problem of diagonalizing dilatations

as the problem of finding eigenvalues for the action of the difference operators acting on

the wave-functions ΨIJ .

The coordinate Bethe ansatz was used in refs. [39] and [27] to find the spectrum of the

one-loop operator in the large M limit. To introduce the technique, we shall review the

essential parts of the argument here. At one-loop order, the eigenvalue equation is

E(1)ΨIJ = g2 (−ΨI+1,J −ΨI−1,J + 4ΨIJ −ΨI,J+1 −ΨI,J−1) I < J (1.35)

E(1)ΨIJ = g2 (−ΨI−1,I −ΨI,I+1 + 2ΨII) I = J (1.36)

where g2 = g2
YMNM/(8π2). To look for a solution, we make the plane-wave ansatz

ΨIJ = µI1µ
J
2 + S0(µ2, µ1)µI2µ

J
1 (1.37)

where µ1 = eip1 and µ2 = eip2 . Then, eq. (1.35) yields the eigenvalue,

E(1) =
λ′M2

2π2

(
sin2 p1

2
+ sin2 p2

2

)
(1.38)

4We note that the detailed form of the contact terms in the difference operators are essential in demon-

strating the self-adjoint property.
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which is the expansion to first order in λ′ of the square roots in (1.28). The problem of

finding the allowed values of (p1, p2) remains.

Then, (1.36) yields the equation

S0(µ2, µ1) = −µ1

µ2

µ1µ2 − 2µ2 + 1

µ1µ2 − 2µ1 + 1
(1.39)

where it should be noticed that S0(µ1, µ2)−1 = S0(µ2, µ1).

The boundary condition ΨI,kM+1 = Ψ1,I gives

µkM2 = S0(µ2, µ1) , µkM1 = S0(µ2, µ1)−1 (1.40)

eqs. (1.40) together with (1.39) are identical to the twisted Bethe equations (1.26), together

with (1.27) with λ′ set to zero. The level-matching condition is obtained by noticing that

ΨI+M,J+M = ΨIJ (1.41)

implies

(µ1µ2)M = 1 (1.42)

1.5 Outline

In the remainder of this Paper, we shall compute the finite size corrections to the spectrum

of dimensions of the two-impurity operators in the su(2) bosonic sector that we have been

discussing so far. We will use the twisted Bethe ansatz, summarized in eqs. (1.26)-(1.28)

and will compute to three-loop order. We also will check explicitly that the coordinate

Bethe ansatz technique which used the difference operator form of the dilatation operator

exhibited in eqs. (1.21)-(1.25) indeed produces the same result to two loop order.

Then, we will adopt the string theory computation which was originally used in ref. [5]

for the near pp-wave limit of AdS5×S5 to the present case of the near DLCQ pp-wave limit

of AdS5 × S5/ZM . This is the string theory dual of the “near”-MRV limit of the N = 2

theory. We compute the spectrum of the string in this case, expanded to order 1/M . On

the string side, the expression that is obtained is exact to all orders in λ′. When expanded

to third order, we find beautiful agreement with the N = 2 gauge theory prediction up to

second order in λ′, i.e. two loops, and disagreement at third, or three loop order.

This disagreement is similar to the one which is found in the N = 4 theory in ref. [7, 1].

In fact, in the de-compactified limit, k →∞, R− →∞ with p+ = k/R− fixed, it approaches

that result.

In addition, we show that, like in the case of N = 4 super-Yang-Mills theory, the

discrepancy can be taken into account by a dressing factor [12].

2. Finite size corrections at one loop

In order to calculate the first finite size corrections to eq. (1.32) we make the following

general ansatz for the magnon momenta

p1 =
2n1π

kM
+
Aπ

M2
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p2 =
2n2π

kM
− Aπ

M2
(2.1)

Recall that we solve at one loop order by simply setting λ′ → 0 in the equation for the

rapidity (1.27), so that it is given by

ϕj =
1

2
cot

pj
2
. (2.2)

By requiring that the Bethe equations (1.26) are satisfied by (2.1) at both leading and next

to leading order in 1
M one gets the following value for A

A =
2
(
n2

1 + n2
2

)

k2(n2 − n1)
(2.3)

We can then insert this solution in the expression (1.38) for the anomalous dimension in

terms of pi and expand in a 1
M series. The first finite size correction to the planar anomalous

dimension reads

∆1 loop =
λ′

2

[
n2

1 + n2
2

k2
−
(

2

kM

) (
n2

1 + n2
2

)

k2
+O

(
1

M2

)]
(2.4)

As a first consistency check, it is easy to verify that when the N = 4 level-matching

condition n2 = −n1 is imposed – this gives the result for the unwrapped, ` = 0 state —

recalling that J = kM and the appropriate re-definition of λ′, the N = 4 result [7, 1] is

recovered.

The zeroth order term in (2.4) equals the one-loop free string spectrum in the plane-

wave limit and the first finite size correction, 1
M order, will be compared with the corre-

sponding 1/R2 correction on the string side of the duality.

3. Two loops

To find the correction to the dimension at two loops, we must expand (1.27) to linear order

in λ′ and then use it in (1.26) to find the momenta, also to linear order in λ′. The resulting

twisted Bethe equation reads

eip2(kM+2) = ei(p1+p2)
1
2 cot p2

2 + λ
8π2 sin p2 − 1

2 cot p1

2 + λ
8π2 sin p1 + i

1
2 cot p2

2 + λ
8π2 sin p2 − 1

2 cot p1

2 + λ
8π2 sin p1 − i

(3.1)

The simultaneous expansion of the momenta in λ′ and 1
M will have the form

p1 =
2n1π

kM
+
Aπ

M2
+ λ′

Bπ

M2
+ · · · , p2 =

2n2π

kM
− Aπ

M2
− λ′Bπ

M2
+ · · · (3.2)

where A, given in eq. (2.3), was calculated in the previous section. We could also have

included a contribute of order λ′/M to the momenta, but eq. (3.1), expanded as a power

series in λ′ and 1/M , would force it to be zero.

The corrections, indicated by three dots are at least of order 1
M3 or λ′2

M2 . (In the next

section, we will compute the λ′2

M2 correction.)
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B can be fixed by requiring that the Bethe equation (3.1) is satisfied at the first order

in the λ′ expansion

B =
2 n2

1n
2
2

k4(n2 − n1)
(3.3)

To calculate the O(λ′2) contribution to the planar anomalous dimension, one plugs

the solution of the Bethe equation into the eigenvalue formula (1.28). Performing a double

series expansion, in λ′ and 1
M , we obtain the following expression for the two loops planar

anomalous dimension, up to the first finite size correction

∆2 loops =
λ′2

8

[
−n

4
1 + n4

2

k4
+

(
4

kM

)
n4

1 + n3
1n2 + n1n

3
2 + n4

2

k4
+O

(
1

M2

)]
. (3.4)

As a consistency check, we take the case where ` = (n1 + n2)/k = 0 We see that (3.4)

agrees with the N = 4 solution [7, 1] in that case.

4. Two loops revisited: the perturbative asymptotic Bethe ansatz

In order to diagonalize the two-loop corrected dilatation operator (1.17) the ansatz for the

wave-function (1.37) has to be adjusted in a perturbative sense in order to take into account

long range interactions. When interactions are included at the next order, the wave-

functions are no longer plane waves. The technique which is used, termed as perturbative

asymptotic Bethe ansatz (PABA) [44, 12], begins with

ΨIJ = µI1µ
J
2 f(J − I + 1, µ1, µ2) + µI2µ

J
1 f(kM − J + I + 1, µ1, µ2) S(µ2, µ1) (4.1)

where the S-matrix and the function f have the perturbative expansions

S(µ2, µ1) = S0(µ2, µ1) +

∞∑

n=1

(g2)n Sn(µ2, µ1)

f(J − I + 1, µ1, µ2) = 1 +
∞∑

n=0

(g2)n+|J−I+1|fn(µ1, µ2) (4.2)

where g2 = g2
YMMN/(8π2) = λ′M2/(8π2). The number of powers of the coupling in the

second of eqs. (4.2) clearly indicates the interaction range on the lattice.

Note that, once it is determined at the leading order, the wave-function at the next

order should be uniquely determined by quantum mechanical perturbation theory. Here,

we are postulating that the result of determining it can be put in the form of eq. (4.1). We

will justify this postulate by showing that (3.4) does satisfy the equation to the required

order and that the process of finding the solution is encoded in the twisted Bethe ansatz.

To derive the two loop Bethe equations it is sufficient to keep only the following terms

in the ansatz (4.1)

ΨIJ = µI1µ
J
2

[
1 + g2|J−I+1|f0(µ1, µ2)

]

+ µI2µ
J
1

[
S0(µ2, µ1) + g2S1(µ2, µ1)

] [
1 + g2|kM+1−J+I|f0(µ1, µ2)

]
(4.3)
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The boundary conditions ΨI,kM+1 = Ψ1,I on (4.3) imply the Bethe equations

µkM2 = S0(µ2, µ1) + g2S1(µ2, µ1)

µkM1 = [S0(µ2, µ1) + g2S1(µ2, µ1)]−1 (4.4)

The Schrödinger equation is obtained, as in section 1.4, by acting on the wave-function

ΨIJ with the dilatation operator as difference operators according to (1.21)-(1.25). In doing

so, the two-loop contributions coming from the action of the 1-loop dilatation operator

on the order λ′ part of the wave-function have to be kept into account. Note that, since

µi = eipi and in general the pi’s depend on λ′, the wave function has an implicit dependence

on λ′ through its dependence on µi.

The difference equation for J − I ≥ 2 reads

(D1 loop +D2 loop) ◦ΨIJ =

g2 (−ΨI+1,J −ΨI−1,J + 4ΨIJ −ΨI,J+1 −ΨI,J−1)
g4

2
(−ΨI−2,J −ΨI+2,J + 4ΨI−1,J + 4ΨI+1,J

−ΨI,J−2 −ΨI,J+2 + 4ΨI,J−1 + 4ΨI,J+1 − 12ΨIJ ) J − I ≥ 2 (4.5)

Using the ansatz (4.3) and keeping only terms up to order g4 we see that, when J − I ≥ 2

the dilatation operator acting on the wave-function returns its form times an eigenvalue,

(D1 loop +D2 loop) ◦ΨIJ =

[
4g2

(
sin2 p1

2
+ sin2 p2

2

)
− g4

8

(
sin4 p1

2
+ sin4 p2

2

)]
ΨIJ (4.6)

In order for (4.3) to be a eigenstate of the dilatation operator up to two loops, this must

also be so for the contact terms in the dilatation operator. For this, the following equations

must hold:

(D1 loop +D2 loop) ◦ΨII =

g2 (−ΨI−1,I −ΨI,I+1 + 2ΨI,I)

+
g4

2
(−ΨI−2,I + 4ΨI−1,I −ΨI−1,I−1 − 4ΨI,I + 4ΨI,I+1 −ΨI+1,I+1 −ΨI,I+2)

≡
[
4g2

(
sin2 p1

2
+ sin2 p2

2

)
− g4

8

(
sin4 p1

2
+ sin4 p2

2

)]
ΨII (4.7)

(D1 loop +D2 loop) ◦ΨI,I+1 =

g2 (−ΨI+1,I+1 −ΨI−1,I+1 + 4ΨI,I+1 −ΨI,I+2 −ΨI,I)

+
g4

2
(−ΨI,I+3 + 4ΨI+1,I+1 + 4ΨI,I+2 − 14ΨI,I+1 + 4ΨI,I + 4ΨI−1,I+1 −ΨI−2,I+1)

≡
[
4g2

(
sin2 p1

2
+ sin2 p2

2

)
− g4

8

(
sin4 p1

2
+ sin4 p2

2

)]
ΨI,I+1 (4.8)

We regard these equations as determining pi.

Using (4.3) and (1.39) in (4.8) the function f0(µ1, µ2) is uniquely derived as

f0(µ1, µ2) = −(µ1 − 1)(µ2 − 1)(µ1 − µ2)

µ2(1 + µ1(µ2 − 2))
(4.9)
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Plugging (4.9) in (4.7) one can fix also the function S1(µ1, µ2) as

S1(µ2, µ1) = −(µ1 − 1)2(µ2 − 1)2(µ1 − µ2)(1 + µ1µ2)

µ2
2(1 + µ1(µ2 − 2))2

(4.10)

Using (1.39) and (4.10) the Bethe equation (4.4) becomes

eip2(kM+2) = ei(p1+p2)

[
1
2 cot p2

2 − 1
2 cot p1

2 + i
1
2 cot p2

2 − 1
2 cot p1

2 − i
− λ

4π2

sin p1 − sin p2(
1
2 cot p2

2 − 1
2 cot p1

2 − i
)2

]
(4.11)

This is equivalent to eq. (3.1) expanded to the first order in λ. We have thus demonstrated

that the PABA in eq. (4.1) solves the eigenvalue equations for the dilatation operator in the

form (1.21)-(1.25) and that the process of finding these solutions is equivalent to solving

the twisted Bethe equations for the N = 2 theory up to two loops.

5. Three loops

The three loop operator dimensions cannot be gotten by direct computation in Yang-Mills

perturbation theory, or equivalently, by the perturbative asymptotic Bethe ansatz approach

that we used for two loops in the previous section. The reason is that, so far, no explicit

expression for the dilatation operator in terms of fields and their derivatives is available at

three loop order. Our approach to computing at three loops will therefore be to assume

that the twisted Bethe ansatz, summarized in eqs. (1.26)-(1.28), correctly describes the

spectrum and to derive the three-loop correction to operator dimensions from it.
For this purpose we have to keep O(λ2) terms in eq. (1.26) so that the twisted Bethe

equation now reads

eip2(kM+2) = ei(p1+p2)

1
2 cot p2

2 + λ
8π2 sin p2+ λ2

64π4 sin p2(cos p2 − 1)− 1
2 cot p1

2 − λ
8π2 sin p1 − λ2

64π4 sin p1(cos p1 − 1)+i
1
2 cot p2

2 + λ
8π2 sin p2+ λ2

64π4 sin p2(cos p2 − 1)− 1
2 cot p1

2 − λ
8π2 sin p1 − λ2

64π4 sin p1(cos p1 − 1)− i
(5.1)

We look for a solution of this equation by means of momenta of the following form

p1 =
2n1π

kM
+
Aπ

M2
+ λ′

Bπ

M2
+ λ′2

Cπ

M2

p2 =
2n2π

kM
− Aπ

M2
− λ′Bπ

M2
− λ′2 Cπ

M2
, (5.2)

where A and B have been computed at lower loops, eqs. (2.3) and (3.3). Recall that

λ′ = λ
M2 . Requiring that the Bethe equations are satisfied at order λ′2 we fix C as

C =
n2

1n
2
2

(
n2

1 − n1n2 + n2
2

)

2k6(n2 − n1)
(5.3)

The eigenvalue formula eq. (1.28) expanded up to three loops gives

∆ = kM + 2 +
λ′M2

2π2

(
sin2 p1

2
+ sin2 p2

2

)
− λ′2M4

8π4

(
sin4 p1

2
+ sin4 p1

2

)
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+
λ′3M6

16π6

(
sin6 p1

2
+ sin6 p2

2

)
+O(λ′4) (5.4)

Taking into account the λ′ dependence of the momenta given in (5.2) and expanding in λ′

and 1
M , we obtain the planar three loop result up to the first finite size correction

∆3 loops =
λ′3

16

[
n6

1 + n6
2

k6
−
(

2

kM

)
3n6

1 + 3n5
1n2 + 4n3

1n
3
2 + 3n1n

5
2 + 3n6

2

k6
+O

(
1

M2

)]
.

(5.5)

This result has to be compared with the 1/R2 corrections to the pp-wave energy spectrum

of the corresponding string states.

As a consistency check, we see that when we set the wrapping number to zero to get

the N = 4 state, i.e. put n2 = −n1, it provides the N = 4 result, in beautiful agreement

with the one quoted in refs. [7, 1].

6. On the string side of the duality

In the previous sections, we discussed the expansion to leading order in 1
M about the MRV

limit of the N = 2 quiver gauge theory. The string dual to the quiver gauge theory is the

IIB superstring on the AdS5 × S5/ZM background. The MRV limit of the N = 2 theory

corresponds to the simultaneous Penrose limit and large M limit of the AdS5 × S5/ZM
orbifold where the ratio R− = R2

2M is held constant. Here, R is the radius of curvature

of AdS5 × S5/ZM . The result is the pp-wave background where the null coordinate has

been periodically identified with radius R−. String theory in that background is described

by a DLCQ version of the string theory on the maximally symmetric pp-wave. The 1
M

expansion of Yang-Mills theory about the MRV limit corresponds to an expansion in the

ratio 1
M = 2R−

R2 about the pp-wave space-time.

Corrections of this kind have already been analyzed in some detail for the case of

N = 4 super Yang-Mills theory — string on AdS5×S5 duality in ref. [5]. They considered

the leading correction to the BMN limit, which was an expansion in the inverse R-charge
1
J of Yang-Mills theory or α′

R2 in string theory. In this section, we will generalize their

computation to the case of the DLCQ string on the pp-wave background. We will compare

the result with our computations of 1/M -corrections in the quiver gauge theory.

The exact spectrum of states of the string theory on the pp-wave background, as well

as the DLCQ of the pp-wave background are well-known. Our goal is to find corrections

to the energies of these states to order 2R−
R2 . The technique to be used is to first find

the correction to the string sigma model which arises from an expansion of the space-

time metric and other background fields about the pp-wave. This yields an interaction

Hamiltonian. The strategy is then to compute corrections to the energy spectrum by

evaluating matrix elements of this interaction Hamiltonian in the pp-wave string theory

states. The coefficient of the interaction Hamiltonian contains the factor 2R−
R2 .

In the case of AdS5 × S5 background, the terms in the interaction Hamiltonian which

contain two bosonic creation and two bosonic annihilation operators are expressed in terms
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of the string oscillators as [5]

HBB = − 1

32p+R2

∑ δ(n+m+ l + p)

ξ
×

{
2

[
ξ2 − (1− klkpknkm) + ωnωmklkp + ωlωpknkm + 2ωnωlkmkp

+2ωmωpknkl

]
a†A−na

†A
−ma

B
l a

B
p + 4

[
ξ2 − (1− klkpknkm)− 2ωnωmklkp + ωlωmknkp

−ωnωlkmkp − ωmωpknkl + ωnωpkmkl

]
a†A−na

†B
−l a

A
ma

B
p + 4

[
8klkpa

†i
−na

†j
−la

i
ma

j
p

+2(klkp + knkm)a†i−na
†i
−ma

j
l a
j
p + (ωlωp + klkp − ωnωm − knkm)a†i−na

†i
−ma

j′
l a

j′
p

−4(ωlωp − klkp)a†i−na†j
′
−la

i
ma

j′
p − (i, j ­ i′, j′)

]}
, (6.1)

where p+ is the space-time momentum conjugate to the light-cone coordinate x−, ξ ≡
√
ωnωmωlωp , ωn =

√
1 + k2

n and k2
n = n2

α′2p+2 = λ′n2, with λ′ = g2
YMN/J

2. The indices

l,m, n, p run from −∞ to +∞. The presence of the R-R flux breaks the transverse SO(8)

symmetry of the metric to SO(4)× SO(4). Consequently the notation distinguishes sums

over indices of the transverse coordinates in the first SO(4) (i, j, . . .), the second SO(4)

(i′, j′, . . .) and over the full SO(8) (A,B, . . .). The operators in (6.1) are in a normal-ordered

form. Since HBB was derived as a classical object, the correct ordering on the operators

is not defined and the ambiguity thus arising can be kept into account by introducing a

normal ordering function NBB(k2
n). Such normal-ordering function can however be set to

zero following the prescription of ref. [5].

The DLCQ version of (6.1) can be obtained by taking into account that the light-cone

momentum p+ along the compactified light-cone direction (x− ∼ x−+ 2πR−) is quantized

as p+ = k/(2R−). R− is related to R through R− = R2/(2M) so that p+ = kM/R2 and

R2 =
√

4πgsα′2NM . The Yang-Mills theory coupling constant is then identified with the

superstring coupling constant gs in the usual way 4πgs = g2
YM and the double scaling limit

is realized by sending both N and M to infinity and keeping the ratio N/M fixed, so that

R− = α′
2

√
g2
YM

N
M = α′

2

√
λ′ is also held fixed. As noticed in the introduction, the definition

of λ′ is in this case related to the YM coupling constant through an analogue of the usual

definition 1
(α′p+)2 =

g2
YMNM

(kM)2 ≡ λ′
k2 . This gives for the frequencies ωn in (6.1) the formula

ωn =
√

1 + λ′ n
2

k2 .

In the case of theN = 2 operator (1.14), the dual string state is the symmetric traceless

two-impurity state created by the action of the following combination of bosonic creation

operators on the string vacuum5

|[1,1; 3,3] >=

[
a†an1

a†bn2
+ a†bn1

a†an2
− 1

2
δaba†gn1

a†gn2

]
|0〉 (6.2)

where n1 + n2 = k `.

5We use the notation of ref. [5], where the representations of SO(4)×SO(4) are classified using an SU(2)

notation as SO(4) ≈ SU(2) × SU(2).
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The general matrix elements of the DLCQ version HZM
BB of (6.1) between space-time

bosons built out of bosonic string oscillators have the following explicit form

〈0| aA−n2
aB−n1

HZM
BB a

†C
n1
a†Dn2
|0〉 = − 1

2R2p+

1√
1 + λ′ n

2
1
k2

√
1 + λ′ n

2
2
k2{

δABδCDλ′
[
n2

1

k2
+
n2

2

k2
+ 2λ′

n2
1n

2
2

k4
+ 2

n1n2

k2

√
1 + λ′

n2
1

k2

√
1 + λ′

n2
2

k2

]

+δACδBDλ′
[
n2

1

k2
+
n2

2

k2
+ 2λ′

n2
1n

2
2

k4
− 2

n1n2

k2

√
1 + λ′

n2
1

k2

√
1 + λ′

n2
2

k2

]

+λ′
[
2
n1n2

k2

(
δabδcd + δacδbd

)
+

(n2
1 + n2

2)

k2
δadδbc

]

−λ′
[
2
n1n2

k2

(
δa
′b′δc

′d′ + δa
′c′δb

′d′
)

+
(n2

1 + n2
2)

k2
δa
′d′δb

′c′
]}

(6.3)

where lower-case SO(4) indices a, b, c, d ∈ 1, . . . , 4 mean that the corresponding SO(8)

labels A,B,C,D all lie in the first SO(4), while the indices a′, b′, c′, d′ ∈ 5, . . . , 8 mean that

the SO(8) labels lie in the second SO(4) (A,B,C,D ∈ 5, . . . , 8).

eq. (6.3) can be used to evaluate the first order correction to the energy of the

state (6.2), namely the matrix element < [1,1; 3,3]|HZM
BB |[1,1; 3,3] >. Summing all the

contributes and dividing the result by the norm of the state

< [1,1; 3,3]|[1,1; 3,3] >= 2(1 +
1

2
δab)

one gets the desired first curvature correction to the spectrum of the states (6.2). The final

result for the energy levels for a two impurity state with discrete light-cone momentum k,

exact to all orders in λ′, is

E(n1, n2) =

√
1 + λ′

(n1

k

)2
+

√
1 + λ′

(n2

k

)2

− λ′

kM



n2

1
k2 +

n2
2
k2 + λ′ n

2
1n

2
2

k4 + n1n2
k2 − n1n2

k2

√
1 + λ′

(
n1
k

)2√
1 + λ′

(
n2
k

)2
√

1 + λ′
(
n1
k

)2√
1 + λ′

(
n2
k

)2


+O

(
1

M2

)

(6.4)

where the small parameter governing the strength of the perturbation has been converted

from 1/(R2p+) to 1/(kM) in order to make the comparison with the finite size corrections

of the gauge theory results more clear. Notice that for n1 = −n2 (6.4) gives back the

N = 4 result of ref. [5], as it should.

A λ′ expansion of (6.4) up to O(λ′2) shows perfect agreement with the gauge theory

calculations at one and two loops, eqs. (2.4) and (3.4). As for the parentN = 4 theory [7, 1],

the disagreement between the two sides of the duality is manifest at three loops, where the

finite size correction to the string energy

E3 loops =
λ′3

16

[
n6

1 + n6
2

k6
−
(

2

kM

)
3n6

1 + 3n5
1n2 + n4

1n
2
2 + 2n3

1n
3
2 + n2

1n
4
2 + 3n1n

5
2 + 3n6

2

k6
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+ O

(
1

M2

)]
(6.5)

does not match its gauge dual result (5.5).

7. The S-matrix dressing factor

Integrable structures have been found also in the AdS5 × S5 string sigma model: from a

classical point of view integral Bethe equations were derived in the thermodynamic limit [8],

while quantum corrections are believed to yield discrete equations describing a finite num-

ber of excitations.

The agreement between the anomalous dimensions of theN = 4 gauge theory operators

in the near-BMN limit and the string energies in the near-plane wave limit up to two gauge

theory loops suggests that, if we wish to describe the string excitations by the language of

a spin chain, the string dynamics should be given by the BDS chain.

The three loop disagreement can actually be encoded by “dressing” the gauge theory S-

matrix (i.e. the r.h.s. of the Bethe equations for the BDS chain) by a multiplicative factor.

From these equations one derives a solution for the momenta of the string excitations

which plugged in the BDS dispersion relation (1.28) reproduce the near-plane wave string

energies, both in the thermodynamic limit and in the few impurity case [45, 10].

The near-plane wave string energies can therefore be computed in the AdS5 × S5 IIB

superstring theory by the following Bethe equations:

eipjL =

M∏

l=1 ; l 6=j
Sstring(pj, pl), (7.1)

with L = J +M and

Sstring(pj, pl) =
ϕj − ϕl + i

ϕj − ϕl − i
exp

{
2i

∞∑

r=0

( λ

16π2

)r+2
[qr+2(pj)qr+3(pl)− qr+2(pl)qr+3(pj)]

}

(7.2)

where the BDS rapidities are defined in (1.4) and the exponential term is the so called

dressing factor, expressed as a function of the BDS conserved charges

qr(pj) =
2 sin ( r−1

2 pj)

r − 1




√
1 + λ

π2 sin2 pj
2 − 1

λ
4π2 sin

pj
2



r−1

(7.3)

In particular, the second charge q2(pj) is the energy of a single excitation and the

energy of a string state with M excitations is given by

E =
λ

8π2

M∑

j=1

q2(pj) (7.4)

We will now discuss the two magnon case in the orbifolded theory and show that the

same dressing factor allows one to compute the DLCQ string energies by means of a Bethe
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ansatz. The two magnon scattering however is not as trivial as in the parent theory, since

the excitations are not forced by the level matching condition to carry opposite momenta.

It is not difficult to check that the string spectrum (6.4) coincides with (7.4) up to

O(λ′3) with M = 2 if the magnon momenta have the form

p1 =
2n1π

kM
+
Aπ

M2
+ λ′

Bπ

M2
+ λ′2

C ′π
M2

p2 =
2n2π

kM
− Aπ

M2
− λ′Bπ

M2
− λ′2C

′π
M2

, (7.5)

with the same A and B found in the gauge theory, eqs. (2.3) (3.3), and C ′ given by

C ′ =
n2

1n
2
2

(
n2

1 + n2
2

)

4k6(n1 − n2)
(7.6)

We conjecture that the string S-matrix for the AdS5×S5/ZM IIB superstring is given

by (7.2) with the addition of a twist factor which coincides with the one used in the gauge

theory

Sorb.string(pj , pl) = ωl
ϕj − ϕl + i

ϕj − ϕl − i

exp

(
2i
∞∑

r=0

( λ

16π2

)r+2
[qr+2(pj)qr+3(pl)− qr+2(pl)qr+3(pj)]

)
(7.7)

with ωl = ei(p1+p2) for the two magnon case. It is easy to see that the Bethe equations

eip2(kM+2) = Sorb.string(p2, p1), (7.8)

are in fact satisfied if p1 and p2 are exactly (7.5), with the constants A, B and C given

in (2.3), (3.3) and (7.6).

Thus we have proved that the dressing factor for the orbifolded theory equals that of

the parent theory and therefore, as for the gauge theory, the spectrum can be obtained

by just twisting the parent Bethe equations: the three loop disagreement is inherited and

does not depend on the orbifold projection.

8. Summary

In this Paper, we have computed the first finite size correction to the anomalous dimension

of two-impurity states about the double scaling limit of the N = 2 quiver gauge theory and

the analogous quantity in the IIB superstring propagating on the plane-wave background

with a periodically identified null coordinate.

In the gauge theory the anomalous dimensions are computed by two independent

techniques that agree with each other. We have solved, up to three loops and the first

finite size correction, the twisted Bethe equations conjectured in ref. [31] for the orbifolded

theory. Then we have provided an ansatz for the eigenstate of the dilatation operator that

up to two loops gives the same spectrum derived with the other procedure. The eigenvalue

equation for this wave function reduces to the twisted Bethe equation.

– 21 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
6

On the string theory side the computation is done by evaluating the first curvature

correction to the pp-wave DLCQ spectrum of a bosonic two excitation state.

We have found that the gauge theory and the string theory results agree up to two loop

order, but there is a disagreement at three loops. This disagreement is similar to, and a

slight generalization of the one which is known to exist at three loop order in the analogous

computation in N = 4 super Yang-Mills theory expanded about the BMN limit [7, 1].

In Summary, the results of this Paper are

∆YM = kM + 2 +
λ′

2

[
n2

1 + n2
2

k2

]
− λ′2

8

[
n4

1 + n4
2

k4

]
+
λ′3

16

[
n6

1 + n6
2

k6

]
+ · · ·

+
λ′

kM

[
−
(
n2

1 + n2
2

)

k2
+
λ′

2

n4
1 + n3

1n2 + n1n
3
2 + n4

2

k4

− λ′2

8

3n6
1 + 3n5

1n2 + 4n3
1n

3
2 + 3n1n

5
2 + 3n6

2

k6
+ · · ·

]
(8.1)

∆string = kM + 2 +
λ′

2

[
n2

1 + n2
2

k2

]
− λ′2

8

[
n4

1 + n4
2

k4

]
+
λ′3

16

[
n6

1 + n6
2

k6

]
+ · · ·

+
λ′

kM

[
−
(
n2

1 + n2
2

)

k2
+
λ′

2

n4
1 + n3

1n2 + n1n
3
2 + n4

2

k4

− λ′2

8

3n6
1 + 3n5

1n2 + n4
1n

2
2 + 2n3

1n
3
2 + n2

1n
4
2 + 3n1n

5
2 + 3n6

2

k6
+ · · ·

]
(8.2)

The first two lines of each of the above expressions are identical and they differ in the

third line.

We have finally shown that the DLCQ string spectrum is obtained by twisting the

string Bethe ansatz proposed in ref. [10]. The three loop disagreement is encoded in a

“dressing factor” added to the gauge theory S-matrix, which coincides with the one of the

N = 4 theory.

Our computations are consistent with integrability of N = 2 quiver gauge theory in

the MRV limit and its string theory dual, DLCQ type IIB superstring theory on a plane

wave background with a compactified null direction.
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